I’m re-going through posts, and a question after reading The Quantum Arena. There you state that if you know the entire amplitude distribution, you can predict what subsequent distributions will be. Am I correct in assuming that this is independent of (observations, “wave function collapses”, or whatever it is when we say that we find a particle at a certain point)?

For example, let’s I have a particle that is “probably” going to go in a straight to from x to y, i.e. at each point in time there is a huge bulge in the amplitude distribution at the appropriate point on the line from x to y. If I observe the particle on the opposite side of the moon at some point (i.e. where the amplitude is non-zero, but still tiny), does the particle still have the same probability as before of “jumping” back onto the line from x to y?

As I write this, I am starting to suspect that I am asking a Wrong Question. Crap.

I’m re-going through posts, and a question after reading The Quantum Arena. There you state that if you know the entire amplitude distribution, you can predict what subsequent distributions will be. Am I correct in assuming that this is independent of (observations, “wave function collapses”, or whatever it is when we say that we find a particle at a certain point)?

For example, let’s I have a particle that is “probably” going to go in a straight to from x to y, i.e. at each point in time there is a huge bulge in the amplitude distribution at the appropriate point on the line from x to y. If I observe the particle on the opposite side of the moon at some point (i.e. where the amplitude is non-zero, but still tiny), does the particle still have the same probability as before of “jumping” back onto the line from x to y?

As I write this, I am starting to suspect that I am asking a Wrong Question. Crap.