
simmconn
Returning Member-
Posts
165 -
Joined
-
Last visited
-
Days Won
2
Content Type
Profiles
Forums
Events
Everything posted by simmconn
-
I can contribute two data points. Out of the two X9000 era Stax plugs I measured, the pin diameter is within 2.36+/-0.004mm, and the pin circle diameter is about 10.95mm. The pins are not perfectly parallel to each other, and the pin circle diameter is slightly larger at the tips.
-
Megatron Electrostatic Headphone Amplifier
simmconn replied to kevin gilmore's topic in Do It Yourself
Interesting design! I’d be a bit worried about the thermal and mechanical side of things. The thermal resistance of the heatsink this size is probably going to run above 5C/W without forced air flow. It is going to run too hot to touch at 350V to 400V/20mA (7 to 8W). With 3C/W theta JC on the 10M90S, there is still margin on the die temperature. If I were to design a PCB to be plugged into a tube socket with soldered pins, I’d use slightly undersized pins and whatever copper I can get for adhesion to the board (double layered board with plated-thought holes in 2-mm or thicker PCB), especially if the counterpart is the unforgiving “modern” tube sockets with tulip type spring contacts. Last but not least, when the whole thing gets very warm, I’d use materials with higher working temperature such as ASA or ABS. PLA is probably not going to last very long. -
I guess the machine shop cheaped out and didn’t use 5-axis tool paths for those steep facets. Otherwise we wouldn’t see the tool marks after heavy sandblasting. This should really have been a cast part. No objections from the environmentalists from the other side of the pond? I’m surprised.
-
Thanks. I guess nobody likes to receive fake parts. But if it’s a low-current, 1200V or better grade IGBT, its characteristics can come very close to the SiCFET we use in threshold voltage, transconductance and even input/output capacitance. It might actually work, at least in the GRHV. I’d be interested to try it out. Well, we should probably stop talking about SicFET or IGBTin this thread, as they are irrelevant to T2.
-
You haven’t answered my question how you determined that the part is a fake (other than from the appearance).
-
If you use them in a constant current source, the Vbe-Ic curve (figure 10) is probably more important than hFE. If you don’t have ways to measure, pick two that are closest in hFE for each channel and hopefully they come close in other parameters as well. If you ask me, I always order at least 2x more than the BOM qty and match them on a curve tracer at or near the actual operating point. The bigger the pool, the more likely you’ll end up with well matched pairs.
-
If I were to choose from a well executed raster image logo in the marking and a badly burned vector one, I’d opt for the latter in a heartbeat. I’ve explained the reason and would not repeat here. For the hFE, you need to know the Ic and Vce your testing was performed at, in order to make a meaningful comparison with the numbers in the datasheet. If you don’t know, measure them. The datasheet says minimum hFE is 170 at 25 degree C, Ic=-1ma and Vce=-5V. From the chart you can see hFE goes slightly up from Ic=-1ma to -10ma and then to -20ma before it starts to drop after Ic=100ma (the red line). If your sample tests at hFE=150 between Ic=-1ma and -10ma, it’s below spec and would be a reject by the factory. You can see the red line is well above 200 and approaching the 300 line, so 340 is not a surprise. +/-20% is considered normal variation. Why would they specify min hFE at only 120 at Ic=-20ma? It could be a simple mistake, or indicating that the hFE could drop as early as Ic=-20ma, unlike what the typical curve suggests, which is a bad news for circuit designers (not applicable for our applications). Nevertheless, sandbagging would not get them into trouble anyways, if you know what I mean. I could go on and on and brag about my affiliation with the semiconductor industry, but let’s keep the personal information out of this discussion. If you think my comments make sense, think about it. Otherwise, just take it with a grain of salt.
-
How do you determine if a part is a fake? If a part with a poorly done or a suspiciously looking marking meets all the specifications of the genuine part that you can verify, would you still declare it a fake?
-
Okay. Please do report back when you hear from Mouser, then I’ll explain why I think hFE of 341 is more reasonable than 150 for an STN9360.
-
You offered your opinion and analysis, I offered mine. Although we disagree, I hope we can respectfully disagree.
-
Mouser is legit, ‘Mauser’ is probably not. The one in the first picture is more likely a fake. Even without a known genuine sample for comparison, you can tell by at least two factors: The four top corners of the plastic molding are rounded and inconsistent, suggesting that the package may have been sanded. The ST logo is a raster image composed of parallel horizontal lines, suggesting that it is a scanned reproduction. A genuine product would have a vector artwork since it is the manufacturer’s original design. Other factors such as the laser marking font or etching depth can vary from manufacturer from manufacturer and even from factory to factory. You would need a known genuine sample for comparison. A low cost transistor tester such as DY294 can test breakdown voltages up to 1kV and measure hFE at different collector current settings. You can choose one that’s close to the transistors’ actual operating point. DY294 Digital Transistor DC Parameter Tester Field Effect Tube Tester Multifunction Semiconductor Tester https://a.aliexpress.com/_mqGVojt
-
Picture 2: An “audio grade transformer “ didn’t care to color code the wires properly, such that the assembly tech has to attach hand-written labels to tell them apart. Maybe only the decal is custom made? Nonetheless it shows the production volume of this kit. Picture 3 and 4: It’s funny they try to use different colored quick disconnect to do dummy-proofing. Did they not know that those quick disconnects are colored differently for a reason? Pink/red for 18GA or smaller, blue for 14/16GA and yellow for 12/10GA. They used similar wire sizes regardless of the requirement of the quick disconnect, and the yellow one is apparently oversized (loose crimping). So much for a “professionally put together” kit.
-
Megatron Electrostatic Headphone Amplifier
simmconn replied to kevin gilmore's topic in Do It Yourself
It’s not hard to do a 1:1 clone of the PCB. It’s also a great interview question for a junior electrical engineer to come up with a circuit that does this. However not a lot of them would probably know how a vacuum tube filament/heater behaves. -
There are plenty of suitable candidates for the SiCFET. I count 9 different parts just by running a simple search on Digikey. Look for 1700V rated Vdss, IDmax less than 10A, Ciss less than 240pf, TO-247-3 package. I would prefer ones that are DC-SoA rated, with a moderate transconductance, low and stable Crss across the entire VDS range. Avoid those that are not characterized for linear operation. The vendor doesn’t want to guarantee those use case, and you will be on your own. I would try the onsemi NVHL1000N170M1 if I were to build another KGSSHV Carbon, although there are cheaper options that may be as good. The closest sub for LT1021 is the LT1236. As far as I know they only differ in long-term drift specs. There are other shunt mode 10V references but none come close to the noise performance of LT1021/LT1236. Of course you can also use second-hand, recycled ones. Those are cheap and already aged to perfection (in terms of long term drift).
-
Megatron Electrostatic Headphone Amplifier
simmconn replied to kevin gilmore's topic in Do It Yourself
Ok, I stand corrected. The Megatron XL uses a 'hybrid' biasing scheme for the 300B. The grid is adjustable between 0 and 0.99% of B- ('fixed'-biasing), which cancels out less than 10% of the bias generated by the cathode resistor (self-biasing). The voltage between the cathode (K) and the grid (G) is the actual grid bias (Vgk), regardless of self-bias or fixed-bias. In a fixed bias setup, you’d measure between GND and G when K is grounded. -
Megatron Electrostatic Headphone Amplifier
simmconn replied to kevin gilmore's topic in Do It Yourself
The Megatron final stage is CCS-loaded single-ended output working in class-A. There is no problem selecting operating point that way. However the final stage is self-biased. The grid bias eats up part of the B-, in other words B- is not equal to Eb in the tube datasheet. 20 to 30mA is more than enough for an estat amp. Since 300B has a low mu (2.85), which is about 1/3 to 1/4 of a triode-strapped EL34, the undistorted output voltage will be less than with EL34. But the DHT fame and the aesthetics probably more than compensate for that. -
Not exactly the same part but being the same package they are more in common that they are different: https://fscdn.rohm.com/en/products/databook/applinote/ic/power/linear_regulator/to252_thermal_resistance_information_an-e.pdf In the final stage CCS, the 10M90S is dissipating 8W to 9W. The theta-JA needs to get down to single digit °C/W in order for the junction to stay comfortably within spec, not to mention that the output DC offset thermal drift has always been our enemy. TO-252 is not going to get you there. Also, even if the copper is well coupled with the aluminum angle, the tiny cross section would still give considerable thermal resistance. You are right in that it is just like the Ohm's law. With theta-JC being 3.1 already, there is not a lot of slack to play with. I think IXYS is being sloppy when it comes to thermal specs in the 10M90S datasheet, by specifying only one number for both packages. With some other parts having about 2x theta-JC in TO-252 than in TO-220, I doubt IXYS can do that much better.
-
Yep, if you had checked the theata-jc of those packages you wouldn’t have bothered with such “test”.
-
I’m surprised to see the series pot only gets 16dB CMRR at min position. The attenuation at that position would have been much higher than 16dB already, for both common mode and differential mode signals. Did you use the same schematic in your earlier post to connect the series pot when using the APx CMRR measurement? I think the source XLR pin1 should be connected to input XLR pin 1, and series pots’ pin 1,3 should be between the source XLR pin 1 and 2/3 respectively, like how you would connect in a real system.
-
I think you are not measuring CMRR, but rather the common mode to differential mode conversion ratio. With the ‘conventional’ dual pot connection, the common mode signal at the input is attenuated at the same ratio as the differential signal; while with the shunt connection (without the help of a line isolation transformer), the common mode signal is not attenuated at all. Apx has common mode drive, why not use it to evaluate CMRR?
-
I like the idea with the 211. It also helps keeping the noise from the filament supply at bay with the common cathode configuration. If matching tubes for the CCS sounds too much, we can always consider the 1700V depletion mode SiC JFET. Thermal management is going to be a challenge though at 35ma.
-
Nice two-piece design! Actually TE and Molex both have 0.093” (2.36mm) crimp contacts in their portfolio. One can make real cheap Stax sockets using those and a 3-D printed shell. The contacts are so cheap that I think not being able to extract them after assembly would be okay. The gold-plated varieties are more expensive, but I’d feel less guilty than cannibalizing Neutrik jacks. Below is one of the one-piece shells I printed using PETG. However I was not quite happy with the surface finish of the 3-D printed shells. Machined shells using acetal and PEI both give nice surface finishes and are plenty rigid. Perhaps too rigid that the RR1 plug starts to show fitting difficulties. 😅
-
I posted the pictures to show how I derived the 10.459mm pin center-to-center dimension. The center-to-center distance is critical in designing the plug or socket, because it is independent from the tolerance of the individual pin diameter. 0.4mm error is quite a bit when put in perspective with regard to the nominal dimension. Your own measurement also shows that the pin distance of the RR1 plug is smaller than the Stax plug. If I were you, I'd go back to the drawing board and find out if the target dimension was incorrect to begin with, or wasn't well controlled in production, rather than sweeping the dust under the rug with 'no disruption in functionality'. A smaller plug can force into the socket thanks to the flexibility of the socket contact and/or the plastic shell. If the socket is made of hard material (such as G10 or phenolic resin) and the contacts are held to high tolerance, a smaller plug would have a hard time fully plugged in. There hasn't been a wide-spread problem because most of the sockets either use soft material (such as Teflon) or contacts that are not held to high tolerance (such as the tuning fork style contact used in the Stax sockets). I'm not saying that every RR1 plug has as large tolerance as mine. But if not, you may have a product consistency issue. Maybe hand-soldering the pins on an acrylic retainer (melting point 160°C) wasn't a good idea after all. "ensure everything is built with precision from the start", "adhering to the strict Production and QC directives". Those are easier said than done.
-
Maybe I’ve got an outlier, but the specimen I have measures only 10.459mm between L- and R+, center-to-center. The distance between L+ and R-/BIAS has similar error that I can visually see it when placed head-to-head with a Stax plug. Without tapping into the proprietary design data of your plug, could you tell us how the Stax plug measures on your end?